(11u^4x-6u^4x^7)/(-2u^2x^3)

Simple and best practice solution for (11u^4x-6u^4x^7)/(-2u^2x^3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (11u^4x-6u^4x^7)/(-2u^2x^3) equation:


D( x )

-2*u^2*x^3 = 0

-2*u^2*x^3 = 0

-2*u^2*x^3 = 0

-2*u^2*x^3 = 0 // : -2*u^2

x^3 = 0

x = 0

x in (-oo:0) U (0:+oo)

(11*u^4*x-(6*u^4*x^7))/(-2*u^2*x^3) = 0

(11*u^4*x-6*u^4*x^7)/(-2*u^2*x^3) = 0

11*u^4*x-6*u^4*x^7 = 0

u^4*x*(11-6*x^6) = 0

-6*x^6 = -11 // : -6

x^6 = 11/6

x^6 = 11/6 // ^ 1/6

abs(x) = (11/6)^(1/6)

x = (11/6)^(1/6) or x = -(11/6)^(1/6)

u^4*x*(x-(11/6)^(1/6))*(x+(11/6)^(1/6)) = 0

(u^4*x*(x-(11/6)^(1/6))*(x+(11/6)^(1/6)))/(-2*u^2*x^3) = 0

( u^4*x )

u^4*x = 0 // : u^4

x = 0

( x+(11/6)^(1/6) )

x+(11/6)^(1/6) = 0 // - (11/6)^(1/6)

x = -(11/6)^(1/6)

( x-(11/6)^(1/6) )

x-(11/6)^(1/6) = 0 // + (11/6)^(1/6)

x = (11/6)^(1/6)

x in { 0}

x in { -(11/6)^(1/6), (11/6)^(1/6) }

See similar equations:

| 6/4x3/4x3/4 | | x^2-20=5x+4 | | 5x-4x=-9 | | 9+n=44 | | a-8+6a=13 | | y=-3x^2+18x-4 | | 3x-24=x+2 | | 29x=15x+2 | | 6(c+4)=-18 | | 4=x-4+7x | | 56=4k | | 3x-6z=9 | | 7(2x+3)=2(4x+6) | | 14=0.5(8x+12) | | 2log(6)(x)=log(6)(2)+log(6)(2x+30) | | k-5-2=-3 | | 3h*6h+20=90 | | 16=2*x-1-x | | 3n=32-n | | 2x+4x-1=180 | | -29=7(x-7/3)-4x | | 48/0.6 | | -12=2b-6b | | 19=5+8x+6 | | a*2+b=0 | | 21-4x=12+5x | | 5k-4k+2=8 | | 3[4(9-2)]=x | | T^2+7t-4=0 | | -9x-5y=25 | | 9x+8=50 | | 8x^3+2=26 |

Equations solver categories